671 research outputs found

    The short-time behavior of kinetic spherical model with long-ranged interactions

    Full text link
    The kinetic spherical model with long-ranged interactions and an arbitrary initial order m_{0} quenched from a very high temperature to T < T_{c} is solved. In the short-time regime, the bulk order increases with a power law in both the critical and phase-ordering dynamics. To the latter dynamics, a power law for the relative order m_{r} ~ -t^{-k} is found in the intermediate time-regime. The short-time scaling relation of small m_{0} are generalized to an arbitrary m_{0} and all the time larger than t_{mic}. The characteristic functions ϕ(b,m0)\phi (b,m_{0}) for the scaling of m_{0} and ϵ(b,T)\epsilon (b,T') for T'=T/T_{c} are obtained. The crossover between scaling regimes is discussed in detail.Comment: 22 pages, 3 figure

    Thompson sampling based Monte-Carlo planning in POMDPs

    No full text
    Monte-Carlo tree search (MCTS) has been drawinggreat interest in recent years for planning under uncertainty. One of the key challenges is the tradeoffbetween exploration and exploitation. To addressthis, we introduce a novel online planning algorithmfor large POMDPs using Thompson sampling basedMCTS that balances between cumulative and simple regrets.The proposed algorithm — Dirichlet-Dirichlet-NormalGamma based Partially Observable Monte-Carlo Planning (D2NG-POMCP) — treats the accumulatedreward of performing an action from a beliefstate in the MCTS search tree as a random variable followingan unknown distribution with hidden parameters.Bayesian method is used to model and infer theposterior distribution of these parameters by choosingthe conjugate prior in the form of a combination of twoDirichlet and one NormalGamma distributions. Thompsonsampling is exploited to guide the action selection inthe search tree. Experimental results confirmed that ouralgorithm outperforms the state-of-the-art approacheson several common benchmark problems

    Multiferroic and Ferroic Topological Order in Ligand-Functionalized Germanene and Arsenene

    Full text link
    Two-dimensional (2D) materials that exhibit ferroelectric, ferromagnetic, or topological order have been a major focal topic of nanomaterials research in recent years. The latest efforts in this field explore 2D quantum materials that host multiferroic or concurrent ferroic and topological order. We present a computational discovery of multiferroic state with coexisting ferroelectric and ferromagnetic order in recently synthesized CH2OCH3-functionalized germanene. We show that an electric-field-induced rotation of the ligand CH2OCH3 molecule can serve as the driving mechanism to switch the electric polarization of the ligand molecule, while unpassivated Ge p(z) orbits generate ferromagnetism. Our study also reveals coexisting ferroelectric and topological order in ligand-functionalized arsenene, which possesses a switchable electric polarization and a Dirac transport channel. These findings offer insights into the fundamental physics underlying these coexisting quantum orders and open avenues for achieving states of matter with multiferroic or ferroic-topological order in 2D-layered materials for innovative memory or logic device implementations

    A concrete certificateless signature scheme without pairings

    Get PDF
    Certificateless public key cryptography was introduced to avoid the inherent key escrow problem in identity-based cryptography, and eliminate the use of certificates in traditional PKI. Most cryptographic schemes in certificateless cryptography are built from bilinear mappings on elliptic curves which need costly operations. Despite the investigation of certificateless public key encryption without pairings, certificateless signature without pairings received much less attention than what it deserves. In this paper, we present a concrete pairing-free certificateless signature scheme for the first time. Our scheme is more computationally efficient than others built from pairings. The new scheme is provably secure in the random oracle model assuming the hardness of discrete logarithm problem

    Visualization of and Access to CloudSat Vertical Data through Google Earth

    Get PDF
    Online tools, pioneered by the Google Earth (GE), are facilitating the way in which scientists and general public interact with geospatial data in real three dimensions. However, even in Google Earth, there is no method for depicting vertical geospatial data derived from remote sensing satellites as an orbit curtain seen from above. Here, an effective solution is proposed to automatically render the vertical atmospheric data on Google Earth. The data are first processed through the Giovanni system, then, processed to be 15-second vertical data images. A generalized COLLADA model is devised based on the 15-second vertical data profile. Using the designed COLLADA models and satellite orbit coordinates, a satellite orbit model is designed and implemented in KML format to render the vertical atmospheric data in spatial and temporal ranges vividly. The whole orbit model consists of repeated model slices. The model slices, each representing 15 seconds of vertical data, are placed on the CloudSat orbit based on the size, scale, and angle with the longitude line that are precisely and separately calculated on the fly for each slice according to the CloudSat orbit coordinates. The resulting vertical scientific data can be viewed transparently or opaquely on Google Earth. Not only is the research bridged the science and data with scientists and the general public in the most popular way, but simultaneous visualization and efficient exploration of the relationships among quantitative geospatial data, e.g. comparing the vertical data profiles with MODIS and AIRS precipitation data, becomes possible

    The Role of Virtual Globes in Geoscience

    Get PDF
    One of the difficulties faced by Earth scientists of all disciplines is how to effectively communicate their research to both other scientists and the general public. With increased attention paid to the health of the planet, the activities of geoscientists in particular are falling under the spotlight of public interest. In age where the internet availability has brought an expectation of information being instantly visible in a graphically rich format, the development of Virtual Globes --computer-based representations of the real-world--has become a natural progression for how best to view these data. In this special issue we bring together a cross-selection of the many examples of how Virtual Globe technologies are being used for geoscience

    Auricle shaping using 3D printing and autologous diced cartilage.

    Get PDF
    ObjectiveTo reconstruct the auricle using a porous, hollow, three-dimensional (3D)-printed mold and autologous diced cartilage mixed with platelet-rich plasma (PRP).MethodsMaterialise Magics v20.03 was used to design a 3D, porous, hollow auricle mold. Ten molds were printed by selective laser sintering with polyamide. Cartilage grafts were harvested from one ear of a New Zealand rabbit, and PRP was prepared using 10 mL of auricular blood from the same animal. Ear cartilage was diced into 0.5- to 2.0-mm pieces, weighed, mixed with PRP, and then placed inside the hollow mold. Composite grafts were then implanted into the backs of respective rabbits (n = 10) for 4 months. The shape and composition of the diced cartilage were assessed histologically, and biomechanical testing was used to determine stiffness.ResultsThe 3D-printed auricle molds were 0.6-mm thick and showed connectivity between the internal and external surfaces, with round pores of 0.1 to 0.3 cm. After 4 months, the diced cartilage pieces had fused into an auricular shape with high fidelity to the anthropotomy. The weight of the diced cartilage was 5.157 ± 0.230 g (P &gt; 0.05, compared with preoperative). Histological staining showed high chondrocyte viability and the production of collagen II, glycosaminoglycans, and other cartilaginous matrix components. In unrestricted compression tests, auricle stiffness was 0.158 ± 0.187 N/mm, similar to that in humans.ConclusionAuricle grafts were constructed successfully through packing a 3D-printed, porous, hollow auricle mold with diced cartilage mixed with PRP. The auricle cartilage contained viable chondrocytes, appropriate extracellular matrix components, and good mechanical properties.Levels of evidenceNA. Laryngoscope, 129:2467-2474, 2019

    Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    Get PDF
    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data

    Alkaline protease production by solid state fermentation on polyurethane foam

    Get PDF
    This paper investigated the process of solid state fermentation (SSF) using PUF (polyurethane foam) as inert solid support to produce alkaline protease. Maximal enzyme activity was 2185U/ml at pH 9.0, incubation temperature 32 0C inoculum amount of 1.0 % (v/v) , nutrient solution3.75 ml/g PUF, incubation time for 2 h and 15.0 mM of added CaCl2. Under the same conditions, the yield of alkaline protease produced by SSF using PUF as support is higher than that by submerged fermentation (SMF)
    corecore